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Abstract - A simultaneous estimation of two boundary conditions in a heat conduction problem is proposed by a 
numerical approach. The aim is to estimate the evolution of the distributions of the unknown surface heat fluxes 
from the transient temperature histories taken with several sensors inside a two-dimensional specimen. The 
temperatures are known on two lines in the finite body. The numerical algorithm of this inverse heat conduction 
problem is based on the iterative regularization method and on the conjugate gradient method. The utilization of 
two descent parameters is at the origin of this method. For each boundary heat flux, a descent parameter is 
computed and an optimal choice of the matrix of the descent parameters is used, showing an increase in the 
convergence rate. All numerical simulations are performed for the two-dimensional linear heat conduction 
problem. The effects of sensor positions and the magnitude of measurement errors on the inverse solutions are 
discussed. Numerical results for some representative cases suggest that heat fluxes and temperature can be 
predicted well by this method. 

 
NOMENCLATURE 

b,a  dimensions of the specimen 
bx random noise 

nf  measured temperature at position  )Y,X( nn

ih  heat transfer coefficient 
N  number of temperature sensors 

tN   number of time steps 

yx N,N   number of nodes in the x, y direction 
T , , temperature,  ambient temperature, initial temperature aT 0T

)t,y(qi  heat flux density 
t ,  time, final time ft
α ,λ  thermal diffusivity, thermal conductivity 

2δ  estimated error or criterion
x∆ , y∆ , t∆  spatial grid in the x, y directions, time step 
Fo∆   delta Fourier number 

ψ   adjoint variable. 
 
1. INTRODUCTION  
Most heat transfer processes occurring in industrial applications require accurate knowledge of the thermal 
properties of the material and surface conditions. Practically, measurements are often made of temperature and 
displacement, etc. Thereafter, physical quantities and surface conditions may to be estimated from these 
measurements. Such problems are called inverse problems and recently have become an interesting subject. To 
date, various methods have been developed for the analysis of the inverse heat conduction problems involving 
the estimation of the surface conditions from measured temperatures inside the material. Most of the analytical 
and numerical methods only deal with one- two- or three-dimensional inverse heat conduction problems (IHCP) 
to estimate a single surface condition [1-7]. However, a few works estimate more than one surface condition in 
two and three dimensional problems. 
 Chen et al. [8] have applied the Laplace transform technique and finite-difference method with a sequential 
in time concept. The least square scheme is proposed to predict the unknown surface temperature of two sided 
boundary conditions for a two dimensional inverse heat conduction problem.  
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 Hsu et al. [9] have used the finite difference method in conjunction with the linear least squares method to 
estimate the one-sided and two-sided boundary conditions in two-dimensional IHCP. In their work, they suppose 
that the functional form of the estimated surface temperature is given a priori and then parametrized. However, 
the effect of the measurement errors on the surface temperature cannot be neglected. Recently, Loulou et al. [10] 
used the iterative regularization method in one dimensional IHCP problem to estimate a combination of two 
kinds of surface boundary conditions. 
 In this work, we propose a simultaneous estimation of transient distributions of two boundary heat 
conditions by using the iterative regularization method and transient temperature histories taken with several 
sensors inside a two-dimensional specimen. 
 

2. PHYSICAL PROBLEM 
The specimen is a rectangular plate heated by two unknown heat fluxes at the active opposite surfaces. The 
others sides are insulated or submitted to convection heat transfer with the ambient. 
 The following hypotheses have been taken into account: 
- Thermo-physical properties are assumed to be constant 
- Heat transfer is two-dimensional 
- Heat fluxes are variable with space and time.  
 Under these conditions, the heat transfer process in the specimen can be described by the following system 
of equations: 
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 In the model (1)-(6), the heat fluxes density  and  are unknowns. To obtain additional 
information about the temperature distribution in the specimen, temperature histories are measured in the 
specimen at a certain number of points  with coordinates

)t,y(q1 )t,y(q2

N )Y,X()y,x( nn= , N,...,2,1n = , distributed on two 
lines parallel to the active surfaces, namely 
 
   )t(f)t,Y,X(T nnnmeas = , N,...,2,1n =         (7) 
 
where:    for  αxX n = 2/Nn1 ≤≤
   for  βxX n = Nn2/N ≤<
This information, together with the model (1)-(6), is used to solve the inverse problem. 
 

3. INVERSE PROBLEM 
To build a computational algorithm, we use the variational formulation of the inverse problem of interest. The 
problem is to find unknown functions  and  for which temperature histories computed from the 
mathematical model (1) to (6) at the sensor locations would be close to measured histories. This leads to the 
problem of minimizing the residual functional: 

)t,y(q1 )t,y(q2
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dt)t(f)q,q;t,Y,X(T)q,q(J ]

where , , are temperature histories computed at the sensor locations with given 
heat fluxes  and .  

)q,q;t,Y,X(T 21nn N,...,2,1n =
)t,y(q1 )t,y(q2

The conjugate gradient method is used to solve this inverse heat conduction problem: 
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where: , , is the descent direction defined by the relation: )t,y(D )k(
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where  for the heat flux   and 0xi = )t,y(q1 axi =  for the heat flux  . )t,y(q2

In the expression (10),  represent the gradient of the residual functional (8) and )t,y('J )k(
qi

)t,y,x(ψ represents 

the solution of the adjoint problem [3]. , )k(
iβ 2,1i = , is the conjugate parameter defined by: 
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where ,  is the scalar product and  the norm defined in the working space. 
)k(

iγ , , is the descent parameter computed from the temperature variation for each heat flux and estimated 

by a linear approximation of the residual functional. The optimal value of the vector is 
obtained by solving the minimization problem: 
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and by solving a matrix system of two dimensions.  
 To obtain a stable solution of the inverse problem, the iterative regularization method is used [3]. The main 
idea is to terminate the iterative procedure when the residual criterion is satisfied: 
    (13) 2)k(
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where is the total (integrated) measurement error defined by:  2δ
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and is an estimate of the time-dependent standard deviation for the nth measured temperature history. This 
procedure gives the most stable solution. The number k* of the last iteration is the regularization parameter of 
the method. 

)t(2
nσ

 One iteration of the numerical algorithm includes the following steps: 
• Solution of the direct problem and computation of the residual functional, 
• Verification of the residual criterion, 
• Solution of the adjoint problem and computation of the residual functional gradient for each unknown heat 
flux, 
• Computation of the descent direction for each heat flux boundary condition, 
• Solution of the problem for temperature variations and computation of the optimal descent parameter for each 
boundary condition, 
• Calculation of the two estimated heat fluxes. 
 
4. RESULTS AND DISCUSSION 
To simulate the numerical solution, we supposed in the problem (1) to (6) that: 1=λ W/(m.C), 1=α m2./s, 

m, °C,   W/(m1ba == 0TT a0 == 10hh 21 == 2.C). 
The measured temperature histories were simulated numerically and uniformly distributed inside the specimen 
on two lines  and  parallel to the active surfaces and defined, respectively, by the coordinates 

 and , 

)L( α )L( β

)y,x( jα )y,x( jβ yjy j ∆= , , 2/N,...,1j = xx ∆αα = , xx ∆ββ = , 
xN

ax =∆ , 
yN

by =∆ , 10NN yx == . 

A random noise of % in the maximal temperature value is applied to the simulated temperatures. bx
  
The alternative direction implicit method (ADI) is used to solve different boundary problems. 
In the first test case, we have assumed: 
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)t,y(q)t,y(q 21 = =  )t(g)y(fq0

where: )
b
y1(

b
y)y(f −=  and )

t
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t
t)t(g

ff

−= , by0 ≤≤ , ftt0 ≤≤ , =4000 W/m0q 2, t∆ = 0,01 s, =1 s.  ft

 
 The exact and estimated heat fluxes and the simulated and estimated temperatures ,  
and  are presented in Figures 1a-d and 2a-d, respectively. The estimated results are obtained for the 
following conditions: 

)t,y,x(T f )t,2/b,x(T
)t,y,2/a(T

Number of the sensors: 22N = , 
Position of the first line : )L( α x2x ∆α = , 
Position of the second line : )L( β x9x ∆β = ,  
Random noise: . %1bx =
 
 A perfect agreement exists at the final time between exact and estimated heat flux and temperatures. A small 
difference is shown, during the intermediate transient regime, in the axial direction y close the boundaries 0y =  
and .  by =
 In the following steps, we have chosen to present only the influences of the sensor locations for symmetrical 
and non symmetrical positions of lines  and , as well as the influence of the noise of measurement on 
the estimated results. Then, we finish this study by presenting an example where the two boundary heat fluxes 
are different. 

)L( α )L( β

 
 
 

0

0.2

0.4

0.6
0.8

t (s)

0

0.2

0.4

0.6
0.8

y (m)

0

50

100

150

200

250

0

50

100

150

200

250

Exact heat flux (W/m2)

 
Figure 1a. 

Exact heat flux, . )t,y(q)t,y(q 21 =
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Figure 1b. 

Exact temperature at final time. )t,y,x(T f

 
 

 

0

0.2

0.4

0.6
0.8

t (s)

0

0.2

0.4

0.6
0.8

y (m)

0

10

20

30

40

50

0

10

20

30

40

50

Exact temperature (C)

 
Figure 1c. 

Exact temperature for . )t,y,x(T c 2/axc =
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Figure 1d. 

Exact temperature for . )t,y,x(T c 2/byc =
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Figure 2a.1. 

Estimated heat flux . )t,y(q1
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Figure 2a.2. 

Estimated heat flux . )t,y(q2
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Figure 2b. 

Estimated temperature at final time. )t,y,x(T fes
0

0.2

0.4

0.6
0.8

t (s)

0

0.2

0.4

0.6
0.8

y (m)

0

10

20

30

40

50

0

10

20

30

40

50

Estimated temperature (C)

 
Figure 2c. 

Estimated temperature  for . )t,y,x(T ces 2/axc =
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Figure 2d. 

Estimated temperature  for )t,y,x(T ces 2/byc = . 
 
 
4.1. INFLUENCE OF SENSOR LOCATIONS 
For  and , the estimated results are presented in Figures 3a-d for five symmetrical positions 

 of the two sensor lines. The corresponding delta Fourier numbers (

%1bx = 22N =

)x,x( βα 21 x
tFo

α

∆α∆ = , 

22 )xa(
tFo
β

∆α∆
−

= ) and the residual criterion  are presented in Table 1. 2δ
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Table 1. 
 

Position )x,x( βα  1Fo∆ = 2Fo∆  2δ  
1 )1 ,0(  ∞  2.69478 
2 )9.0 ,1.0(  1 1.70055 
3 )0.8 ,2.0(  0.25 1.14183 
4 )7.0 ,3.0(  0.1111 0.83695 
5 )6.0 ,4.0(  0.0625 0.68446 

 
 
 The results show a perfect agreement between the evolution of exact and estimated heat fluxes for the first 
position  and the second position . Good agreement is noted also between the distributions in the 
estimated heat fluxes  and  for position 1. The other curves show that the errors in the 
estimated results increase naturally when the positions of the sensors lines increase from the active surfaces of 
the specimen. 

)1 ,0( )9.0 ,1.0(
)t,y(q c1 )t,y(q c2
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Figure 3a. 

Evolution of exact and estimated heat flux   
 at , for different positions. )t,y(q1 2/by =
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Figure 3b. 

Evolution of exact and estimated heat flux   
 at , for different positions. )t,y(q c2 2/byc =
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Figure 3c. 

Exact and estimated profiles  at time )t,y(q c1

fc t5.0t = for different positions. 
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Figure 3d. 

Exact and estimated profiles  at time )t,y(q c2

fc t5.0t = for different positions. 

 For the same condition described above, we present in Figures 5a-b, the estimated results for 
nonsymmetrical positions of the sensor lines  and . The analyzed positions are presented in Table 2. )L( α )L( β
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Table 2. 
 

Position )x,x( βα  1Fo∆  2Fo∆  
1 )8.0 ,1.0(  1 0.25 
2 )6.0 ,1.0(  1 0.625 
3 )4.0 ,1.0(  1 0.0278 

 
 
 The results show that the estimation of the heat flux  is better than the heat flux  and 
explain the importance of the position of the sensors towards the active surfaces. It should be noted however that 
the results obtained in this case for the first heat flux  are worse than those obtained with a symmetric 
configuration. This difference is explain by the fact that the estimations of the heat flux  are affected by 
those obtained for . 
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Figure 5a. 

Evolution of exact and estimated heat flux   
 at , for different nonsymmetrical 

positions.  
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Figure 5b. 

Evolution of exact and estimated heat flux   
 at)t,y(q c2 2/byc = , for different nonsymmetrical 

positions. 
 
 
4.2. INFLUENCE OF NOISY DATA 
We present in figures 6a-b, for sensor lines positions ,)0.9 ,1.0( 21N = , 1Fo∆ = 2Fo∆ =1, the estimated heat 
flux  for  the four values of random noise )t,y(q1 3  ,1  ,25.0bx = and of the maximal of the simulated 
temperature. The corresponding residual criteria are presented in Table 3. 

% 5  

 
Table 3. 

 
bx  0.25 1 3 5 

2δ  0.1063 1.7006 15.305 42.5138 
 
 The results show good agreement for small values of noise and the errors increase according to the noise. It 
is noted that the criteria of the iterative regularization method makes it possible to obtain acceptable and stable 
results for the amplitude of the noise imposed on the measured temperatures. The second estimated heat flux 

 shows the same behavior. )t,y(q2
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Figure 6a. 

Influence of noisy data on the estimated heat flux 
. )t,y(q c1
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Figure 6b. 

Influence of noisy data on the estimated heat flux 
. )t,y(q c1

 
4.3. NUMERICAL TESTS FOR CASE )t,y(q)t,y(q 21 ≠  
 
Figures 7a and b show a comparison between the exact and the estimated heat fluxes and 

 for two nonsymmetrical positions and , with , .  
)t,y(q1

)t,y(q 25.0)t,y(q 12 = )0.9 ,1.0( )0.9 ,3.0( % 1bx = 21N =
One finds the same remarks described above, i.e. as best estimate of the heat flux conditions nearest to the 

sensors. Here, the second heat flux presents a better estimate whereas that of first heat flux is less since the first 
line of the sensors is further away from the surface condition being estimated. 
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Figure 7a. 

Evolution of estimated heat flux for case 21 qq ≠ . 
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Figure 7b. 

Distribution of estimated heat flux for case 21 qq ≠ . 

 
5. CONCLUSIONS 
An inverse method is used for to estimate the unknown surface heat fluxes from temperature data measured at 
two lines parallel to the heated surfaces of a rectangular plate. The functional form of the unknown surface 
conditions is unknown a priori. The numerical algorithm of this inverse heat conduction problem is based on the 
iterative regularization method and on the conjugate gradient method. For each boundary heat flux, a descent 
parameter is computed and an optimal choice of the matrix of the descent parameters is used and shows an 
increase in the convergence rate. 
 The present estimates exhibit stable and accurate results and agree with the exact surface boundary 
conditions. Results show also that the accuracy of the estimated results decrease when the positions of the sensor 
line (or with delta Fourier numbers ( 05.0Fo ≤∆ )) increase from the unknown heated surface and also when 
the noise of measurement (or simulated) temperatures increase. Other results, not presented here, show a good 
agreement between exact and estimated results for different distribution forms (constant, sinusoidal, etc.) and in 
the case where the evolution of the distribution of the two unknown heat fluxes is different. 
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